Contents

Capillary Pressure Equations... 1

- **Buoyancy Forces Definition** .. 1
- **Capillary Forces Definition** .. 1
- **Largest Pore Throat** ... 1
- **Saturation Height** .. 1

Relative Permeability Equations .. 3

- **Oil Relative Permeability Definition** ... 3
- **Water Relative Permeability Definition** .. 3
- **Oil Relative Permeability Calculation** .. 3
- **Water Relative Permeability Calculation** ... 4
- **Water-Oil Ratio Calculation** .. 4

Laboratory Procedures Equations – Relative Permeability .. 5

- **Darcy’s Law for Oil** .. 5
- **Darcy’s Law for Water** .. 5
- **Oil Relative Permeability Definition** ... 5
- **Water Relative Permeability Definition** .. 6
- **Saturation Mass Balance I** .. 6
- **Saturation Mass Balance II** ... 6

Laboratory Procedures Equations – Capillary Pressure ... 7

- **Corrections to Laboratory Data** .. 7

Laboratory Procedures Equations – Wettability ... 8

- **Oil Index** .. 8
- **Water Index** .. 8
- **Amott Index** ... 8

Modeling Equations .. 8

- **Modified-Corey Water Relative Permeability** ... 9
- **Normalized Water Saturation** ... 9
- **Modified-Corey Oil Relative Permeability** ... 9
- **Stone’s First 3-Phase Relative Permeability** .. 10
- **Thomeer Capillary Pressure** .. 10
Capillary Pressure Equations

Buoyancy Forces Definition

\[\Delta \rho g \Delta h \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \rho)</td>
<td>In-situ difference in density between water and oil</td>
<td>[kg/m³]</td>
<td>[lb/cuft]</td>
<td>[g/cc]</td>
</tr>
<tr>
<td>(g)</td>
<td>Acceleration due to gravity</td>
<td>[m/s²]</td>
<td>[ft/s²]</td>
<td>[cm/s²]</td>
</tr>
<tr>
<td>(\Delta h)</td>
<td>Height above engineering oil-water contact</td>
<td>[m]</td>
<td>[ft]</td>
<td>[cm]</td>
</tr>
</tbody>
</table>

Capillary Forces Definition

\[\frac{2\sigma \cos \theta}{r} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>Surface tension between oil and water</td>
<td>[kPa/m]</td>
<td>[dyne/cm]</td>
<td>[dyne/cm]</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Contact angle between oil, water and rock</td>
<td>[°]</td>
<td>[°]</td>
<td>[°]</td>
</tr>
<tr>
<td>(r)</td>
<td>Pore throat radius</td>
<td>[m]</td>
<td>[micron]</td>
<td>[μm]</td>
</tr>
</tbody>
</table>

As the all three unit systems are inconsistent, a conversion factor is technically required to equate the buoyancy forces with the capillary forces. These calculations are most easily done in laboratory units, which only requires a shift in decimal point.

Largest Pore Throat

\[r = a_0 \frac{2\sigma \cos \theta}{P_e} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>Pore throat radius</td>
<td>[m]</td>
<td>[micron]</td>
<td>[μm]</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Surface tension between oil and water</td>
<td>[kPa/m]</td>
<td>[dyne/cm]</td>
<td>[dyne/cm]</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Contact angle between oil, water and rock</td>
<td>[°]</td>
<td>[°]</td>
<td>[°]</td>
</tr>
<tr>
<td>(P_e)</td>
<td>Threshold pressure</td>
<td>[kPa]</td>
<td>[psi]</td>
<td>[dyne]</td>
</tr>
<tr>
<td>(a_0)</td>
<td>Unit Conversion factor</td>
<td>[calc]</td>
<td>[calc]</td>
<td>[10⁴]</td>
</tr>
</tbody>
</table>

Saturation Height

\[\Delta h = a_1 \frac{P_c}{\Delta \rho g} \]
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δh</td>
<td>Height above engineering oil-water contact</td>
<td>[m]</td>
<td>[ft]</td>
<td>[cm]</td>
</tr>
<tr>
<td>P_c</td>
<td>Capillary pressure</td>
<td>[kPa]</td>
<td>[psi]</td>
<td>[dyne]</td>
</tr>
<tr>
<td>Δρ</td>
<td>In-situ difference in density between water and oil</td>
<td>[kg/m³]</td>
<td>[lb/cuft]</td>
<td>[g/cc]</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity</td>
<td>[m/s²]</td>
<td>[ft/s²]</td>
<td>[cm/s²]</td>
</tr>
<tr>
<td>a₁</td>
<td>Unit Conversion factor</td>
<td>[1000.0]</td>
<td>[32.174/144.0]</td>
<td>[Calc]</td>
</tr>
</tbody>
</table>
Relative Permeability Equations

Oil Relative Permeability Definition

\[k_{ro} = \frac{k_o}{k} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{ro})</td>
<td>Oil relative permeability</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>(k_o)</td>
<td>Oil effective permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
<tr>
<td>(k)</td>
<td>Absolute permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
</tbody>
</table>

Water Relative Permeability Definition

\[k_{rw} = \frac{k_w}{k} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{rw})</td>
<td>Water relative permeability</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>(k_w)</td>
<td>Water effective permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
<tr>
<td>(k)</td>
<td>Absolute permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
</tbody>
</table>

Oil Relative Permeability Calculation

\[q_o = \frac{k_{ro}kA\Delta p}{\mu_o\Delta L} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_o)</td>
<td>Oil rate</td>
<td>-</td>
<td>-</td>
<td>[cm³/sec]</td>
</tr>
<tr>
<td>(k_{ro})</td>
<td>Oil relative permeability</td>
<td>-</td>
<td>-</td>
<td>[]</td>
</tr>
<tr>
<td>(k)</td>
<td>Absolute permeability</td>
<td>-</td>
<td>-</td>
<td>[D]</td>
</tr>
<tr>
<td>(A)</td>
<td>Cross-sectional area perpendicular to flow</td>
<td>-</td>
<td>-</td>
<td>[cm²]</td>
</tr>
<tr>
<td>(\Delta p)</td>
<td>Pressure drop in flow direction</td>
<td>-</td>
<td>-</td>
<td>[atm]</td>
</tr>
<tr>
<td>(\Delta L)</td>
<td>Length in flow direction</td>
<td>-</td>
<td>-</td>
<td>[cm]</td>
</tr>
<tr>
<td>(\mu_o)</td>
<td>Oil viscosity</td>
<td>-</td>
<td>-</td>
<td>[cP]</td>
</tr>
</tbody>
</table>
Water Relative Permeability Calculation

\[q_w = \frac{k_{rw}kA\Delta p}{\mu_w\Delta L} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_w)</td>
<td>Water rate</td>
<td>-</td>
<td>-</td>
<td>[cm³/sec]</td>
</tr>
<tr>
<td>(k_{rw})</td>
<td>Water relative permeability</td>
<td>-</td>
<td>-</td>
<td>[]</td>
</tr>
<tr>
<td>(k)</td>
<td>Absolute permeability</td>
<td>-</td>
<td>-</td>
<td>[D]</td>
</tr>
<tr>
<td>(A)</td>
<td>Cross-sectional area perpendicular to flow</td>
<td>-</td>
<td>-</td>
<td>[cm²]</td>
</tr>
<tr>
<td>(\Delta p)</td>
<td>Pressure drop in flow direction</td>
<td>-</td>
<td>-</td>
<td>[atm]</td>
</tr>
<tr>
<td>(\Delta L)</td>
<td>Length in flow direction</td>
<td>-</td>
<td>-</td>
<td>[cm]</td>
</tr>
<tr>
<td>(\mu_w)</td>
<td>Water viscosity</td>
<td>-</td>
<td>-</td>
<td>[cP]</td>
</tr>
</tbody>
</table>

Water-Oil Ratio Calculation

\[\frac{q_w}{q_o} = \frac{k_{rw}}{\mu_w B_w} \left(\frac{\mu_o B_o}{k_{ro}} \right) \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_o)</td>
<td>Oil rate</td>
<td>[sm³/d]</td>
<td>[stb/d]</td>
<td>-</td>
</tr>
<tr>
<td>(q_w)</td>
<td>Water rate</td>
<td>[sm³/d]</td>
<td>[stb/d]</td>
<td>-</td>
</tr>
<tr>
<td>(k_{ro})</td>
<td>Oil relative permeability</td>
<td>[]</td>
<td>[]</td>
<td>-</td>
</tr>
<tr>
<td>(k_{rw})</td>
<td>Water relative permeability</td>
<td>[]</td>
<td>[]</td>
<td>-</td>
</tr>
<tr>
<td>(\mu_o)</td>
<td>Oil viscosity</td>
<td>[mPa.s]</td>
<td>[cP]</td>
<td>-</td>
</tr>
<tr>
<td>(\mu_w)</td>
<td>Water viscosity</td>
<td>[mPa.s]</td>
<td>[cP]</td>
<td>-</td>
</tr>
<tr>
<td>(B_o)</td>
<td>Oil formation volume factor</td>
<td>[m³/sm³]</td>
<td>[bbl/stb]</td>
<td>-</td>
</tr>
<tr>
<td>(B_w)</td>
<td>Water formation volume factor</td>
<td>[m³/sm³]</td>
<td>[bbl/stb]</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory Procedures Equations – Relative Permeability

Darcy’s Law for Oil

\[q_o = k_o \frac{\pi \left(\frac{d}{2} \right)^2 \Delta p}{\mu_o x} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_o)</td>
<td>Oil effective permeability</td>
<td></td>
<td>[D]</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Diameter of core sample</td>
<td></td>
<td>[cm]</td>
<td></td>
</tr>
<tr>
<td>(\pi)</td>
<td>Circle constant (~3.14)</td>
<td></td>
<td></td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(\Delta p)</td>
<td>Pressure drop in flow direction</td>
<td></td>
<td>[atm]</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>Length in flow direction</td>
<td></td>
<td>[cm]</td>
<td></td>
</tr>
<tr>
<td>(\mu_o)</td>
<td>Oil viscosity</td>
<td></td>
<td></td>
<td>[cP]</td>
</tr>
</tbody>
</table>

Darcy’s Law for Water

\[q_w = k_w \frac{\pi \left(\frac{d}{2} \right)^2 \Delta p}{\mu_w x} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_w)</td>
<td>Water effective permeability</td>
<td></td>
<td>[D]</td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Diameter of core sample</td>
<td></td>
<td>[cm]</td>
<td></td>
</tr>
<tr>
<td>(\pi)</td>
<td>Circle constant (~3.14)</td>
<td></td>
<td></td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(\Delta p)</td>
<td>Pressure drop in flow direction</td>
<td></td>
<td>[atm]</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>Length in flow direction</td>
<td></td>
<td>[cm]</td>
<td></td>
</tr>
<tr>
<td>(\mu_w)</td>
<td>Water viscosity</td>
<td></td>
<td></td>
<td>[cP]</td>
</tr>
</tbody>
</table>

Oil Relative Permeability Definition

\[k_{ro} = \frac{k_o}{k} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{ro})</td>
<td>Oil relative permeability</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>(k_o)</td>
<td>Oil effective permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
<tr>
<td>(k)</td>
<td>Absolute permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
</tbody>
</table>
Water Relative Permeability Definition

\[k_{rw} = \frac{k_w}{k} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{rw})</td>
<td>Water relative permeability</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
<tr>
<td>(k_w)</td>
<td>Water effective permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
<tr>
<td>(k)</td>
<td>Absolute permeability</td>
<td>[mD]</td>
<td>[mD]</td>
<td>[D]</td>
</tr>
</tbody>
</table>

Saturation Mass Balance I

\[m_s = m_o + m_w + m_r \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_s)</td>
<td>Mass of saturated core sample</td>
<td>[mg]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_o)</td>
<td>Mass of oil in saturated core sample</td>
<td>[mg]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_w)</td>
<td>Mass of water in saturated core sample</td>
<td>[mg]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m_r)</td>
<td>Mass of rock (solid material) in saturated core sample</td>
<td>[mg]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Saturation Mass Balance II

\[m_s = [\rho_o \phi (1 - S_w) + \rho_w \phi S_w + \rho_r (1 - \phi)] \left(\pi \left(\frac{d}{2} \right)^2 x \right) \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Units</th>
<th>Oilfield Units</th>
<th>Lab Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_o)</td>
<td>Oil density</td>
<td>[g/cc]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_w)</td>
<td>Water density</td>
<td>[g/cc]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_r)</td>
<td>Rock (solid material) density</td>
<td>[g/cc]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_w)</td>
<td>Core sample water saturation</td>
<td>[dimensionless]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\phi)</td>
<td>Core sample porosity</td>
<td>[dimensionless]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td>Diameter of core sample</td>
<td>[cm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>Length in flow direction</td>
<td>[cm]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi)</td>
<td>Circle constant (~3.14)</td>
<td>[dimensionless]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory Procedures Equations – Capillary Pressure

Corrections to Laboratory Data

\[p_{c_{res}} = p_{c_{lab}} \times \left(\frac{\sigma_{res} \cos \varphi_{res}}{\sigma_{lab} \cos \varphi_{lab}} \right) \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Lab Units</th>
<th>SI Units</th>
<th>Oilfield Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{c_{res}})</td>
<td>Capillary pressure – reservoir conditions</td>
<td>[mbar]</td>
<td>[kPa]</td>
<td>[psi]</td>
</tr>
<tr>
<td>(p_{c_{lab}})</td>
<td>Capillary pressure – laboratory conditions</td>
<td>[mbar]</td>
<td>[kPa]</td>
<td>[psi]</td>
</tr>
<tr>
<td>(\sigma_{res})</td>
<td>Interfacial tension - reservoir conditions</td>
<td>[dyne.cm]</td>
<td>[N.m]</td>
<td>[dyne.cm]</td>
</tr>
<tr>
<td>(\sigma_{lab})</td>
<td>Interfacial tension – laboratory conditions</td>
<td>[dyne.cm]</td>
<td>[N.m]</td>
<td>[dyne.cm]</td>
</tr>
<tr>
<td>(\varphi_{res})</td>
<td>Contact angle – reservoir conditions</td>
<td>[°]</td>
<td>[°]</td>
<td>[°]</td>
</tr>
<tr>
<td>(\varphi_{lab})</td>
<td>Contact angle – laboratory conditions</td>
<td>[°]</td>
<td>[°]</td>
<td>[°]</td>
</tr>
</tbody>
</table>
Laboratory Procedures Equations – Wettability

Oil Index

\[I_o = \frac{V_2}{V_2 + V_3} \]

\[0 \leq I_o \leq 1 \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Lab Unit</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_o)</td>
<td>Oil index</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(V_2)</td>
<td>Oil spontaneously entering core</td>
<td>[cc]</td>
<td>[m³]</td>
<td>[bbl]</td>
</tr>
<tr>
<td>(V_3)</td>
<td>Oil entering core under force</td>
<td>[cc]</td>
<td>[m³]</td>
<td>[bbl]</td>
</tr>
</tbody>
</table>

Water Index

\[I_w = \frac{V_4}{V_4 + V_5} \]

\[0 \leq I_w \leq 1 \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Lab Unit</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_w)</td>
<td>Water index</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(V_4)</td>
<td>Water spontaneously entering core</td>
<td>[cc]</td>
<td>[m³]</td>
<td>[bbl]</td>
</tr>
<tr>
<td>(V_5)</td>
<td>Water entering core under force</td>
<td>[cc]</td>
<td>[m³]</td>
<td>[bbl]</td>
</tr>
</tbody>
</table>

Amott Index

\[I_A = I_w - I_o \]

\[-1 \leq I_A \leq 1 \]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Lab Unit</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_A)</td>
<td>Amott index</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(I_o)</td>
<td>Oil index</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
</tr>
<tr>
<td>(I_w)</td>
<td>Water index</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
<td>[dimensionless]</td>
</tr>
</tbody>
</table>

Modeling Equations
Modified-Corey Water Relative Permeability

\[k_{rw} = k_{rw}^*(S_w^*)^m \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
<th>Lab Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{rw})</td>
<td>2-phase water relative permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_{rw}^*)</td>
<td>2-phase water relative permeability end-point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(m)</td>
<td>2-phase water saturation exponent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_w^*)</td>
<td>Normalized water saturation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Normalized Water Saturation

\[S_w^* = \frac{S_w - S_{wc}}{1 - S_{wc} - S_{orw}} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
<th>Lab Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_w^*)</td>
<td>Normalized water saturation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_w)</td>
<td>Actual water saturation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{wc})</td>
<td>Critical water saturation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_{orw})</td>
<td>Residual oil saturation to water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified-Corey Oil Relative Permeability

\[k_{ro} = k_{ro}^*(1 - S_w^*)^n \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
<th>Lab Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{ro})</td>
<td>2-phase oil relative permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_{ro}^*)</td>
<td>2-phase oil relative permeability end-point</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)</td>
<td>2-phase oil saturation exponent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_w^*)</td>
<td>Normalized water saturation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Stone’s First 3-Phase Relative Permeability

\[k_{ro} = (k_{rw} + k_{row})(k_{rg} + k_{rog}) - (k_{rw} + k_{rg}) \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
<th>Lab Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{ro})</td>
<td>3-phase oil relative permeability</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
<tr>
<td>(k_{row})</td>
<td>2-phase oil relative permeability from oil-water table</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
<tr>
<td>(k_{rog})</td>
<td>2-phase oil relative permeability from gas-oil table</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
<tr>
<td>(k_{rg})</td>
<td>2-phase gas relative permeability</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
<tr>
<td>(k_{rw})</td>
<td>2-phase water relative permeability</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
</tbody>
</table>

Thomeer Capillary Pressure

\[\ln(1 - S_w) = \frac{-G}{\log \frac{p_c}{p_d}} \]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>SI Unit</th>
<th>Oilfield Unit</th>
<th>Lab Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_c)</td>
<td>Capillary pressure</td>
<td>[kPa]</td>
<td>[psi]</td>
<td>[atm]</td>
</tr>
<tr>
<td>(p_d)</td>
<td>Threshold pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G)</td>
<td>Interporosity coefficient</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
<tr>
<td>(S_w)</td>
<td>Water (or more precisely, wetting) saturation</td>
<td></td>
<td>[dimensionless]</td>
<td></td>
</tr>
</tbody>
</table>